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Abstract. We present a hardware and software platform for rapid prototyping
of augmented sensor network systems, which may be temporarily connected to
a backend infrastructure for data storage and user interaction, and which may
also make use of actuators or devices with rich computing resources that perform
complex signal processing tasks. The use of Bluetooth as the wireless networking
technology provides us with a rich palette of Bluetooth-enabled commodity de-
vices, which can be used as actuators, infrastructure gateways, or user interfaces.
Our platform consists of a Bluetooth-based sensor node hardware (the BTnode),
a portable operating system component, and a set of system services. This paper
gives a detailed motivation of our platform and a description of the platform com-
ponents. Though using Bluetooth in wireless sensor networks may seem counter-
intuitive at first, we argue that the BTnode platform is indeed well suited for
prototyping applications in this domain. As a proof of concept, we describe two
prototype applications that have been realized using the BTnodes.

1 Introduction

Recent advances in wireless communication and micro system technology allow the
construction of so-called “sensor nodes”. Such sensor nodes combine means for sens-
ing environmental parameters, processors, wireless communication capabilities, and an
autonomous power supply in a single tiny device that can be fabricated in large num-
bers at low cost. Large and dense networks of these untethered devices can then be
deployed unobtrusively in the physical environment in order to monitor a wide variety
of real-world phenomena with unprecedented quality and scale while only marginally
disturbing the observed physical processes [1, 9].

In other words, Wireless Sensor Networks (WSNs) provide the technological foun-
dation for performing many “experiments” in their natural environment instead of using
an artificial laboratory setting, thus eliminating many fundamental limitations of the lat-
ter. It is anticipated that a wide range of application domains can substantially benefit



from such a technological foundation. Biologists, for example, want to monitor the be-
havior of animals in their natural habitats; environmental research needs better means
for monitoring environmental pollution; agriculture can profit from better means for
observing soil quality and other parameters that influence plant growth; geologists need
better support for monitoring seismic activity and its influences on the structural in-
tegrity of buildings; and of course the military is interested in monitoring activities in
inaccessible areas.

These exemplary applications domains demonstrate one important property of
WSNs: their inherent and close integration with the real world, with data being cap-
tured and processed automatically in the physical environment, often in real time. This
is in contrast to traditional computing systems, which are typically mostly decoupled
from the real world. This paradigmatic change comes with a number of important im-
plications, also with respect to the development and deployment of WSNs.

One such implication is that sensor networks are hard to simulate, since their exact
behavior very much depends on many parameters of the physical environment. Already
rather subtle differences of the simulation models and the real world can make the
difference between a working and a broken implementation [14]. For example, many
wireless radio simulations assume a spherical communication range. However, mea-
surements in a network of about 100 sensor nodes revealed that the radio commu-
nication range is far from spherical in practice [12]. This can lead to asymmetric or
even unidirectional communication links, which can easily break algorithms that as-
sume symmetrical links.

Hence, experimentation platforms for performing real experiments are of particular
importance in the sensor network domain. As part of various research projects, a number
of such sensor network platforms were developed [3, 16]. These platforms are typically
optimized for energy efficiency, providing rather restricted processing capabilities and a
low-power radio platform. While this leads to sensor networks with improved longevity,
the chosen RF-communication technology also imposes a number of limitations. This
is especially true in experimental settings, where the purpose is the development and
evaluation of algorithms and prototypical application scenarios.

We have explored a different point of the design space and have developed a sensor
node – the BTnode – which is optimized for programming comfort and interoperabil-
ity, using a more powerful processor, more memory, and a Bluetooth radio. Our choice
was motivated by the need for a functional, versatile fast prototyping platform that is
certainly not the ultimate in low-power device technology but rather available today, to
an extent energy aware and low cost. Additionally, we were inspired by the observation
that sensor networks are almost always part of larger systems consisting of heteroge-
neous devices, whose collaboration requires an interoperable networking technology.

In the remainder of this paper, we present the BTnode platform, including the hard-
ware, the operating system software, and the service infrastructure. We begin with mo-
tivating our design decisions and the use of Bluetooth as a networking technology for
sensor networks. Sect. 3 describes the BTnode hardware and its operating system while
Sect. 4 characterizes the system services we designed for building complex applica-
tions. As a proof of concept, we present two such applications that have been developed



using our platform in Sect. 5. Power consumption issues are described in Sect. 6. Re-
lated work and conclusions are presented in Sect. 7 and 8, respectively.

2 Motivation

Our sensor network platform uses Bluetooth as a communication means. Many features
of the Bluetooth specification and its implementations make the use of Bluetooth in
sensor networks inadequate at first glance. But on the other hand, Bluetooth has become
an interoperable wireless networking standard which is implemented in a number of
consumer devices (e.g., PDAs, laptops, mobile phones, digital cameras) or hardware
extensions (e.g., USB sticks, PCMCIA cards), and is supported by all major operating
systems. This interoperability with a large variety of devices makes Bluetooth valuable
in the sensor network domain, in particular for prototyping of applications now while
other technologies are still under development. Below we outline some of the more
interesting Bluetooth features and sketch concrete applications where these come in
handy.

Bluetooth Features. When compared with “traditional” communication approaches for
wireless sensor networks, Bluetooth has a rather high power consumption, suffers from
somewhat long connection setup times, and has a lower degree of freedom with respect
to possible network topologies [17].

On the other hand, Bluetooth is a connection-oriented, wireless communication
medium that assures interoperability between different devices and enables application
development through a standardized interface. It offers a significantly higher bandwidth
(about 1 megabit per second) compared to many low-power radios (about 50 kilobit per
second). Furthermore, the standardized Host Controller Interface (HCI) provides a high
level interface that requires no knowledge of the underlying baseband and media access
layers and their respective processing. This abstraction offers built-in high-level link-
layer functionality such as isochronous and asynchronous communication, link multi-
plexing, QoS, integrated audio, forward error correction, automatic packet retransmis-
sion, user authentication using link keys, and encryption. Bluetooth also offers service
discovery, serial port emulation, and IP connectivity.

Infrastructure Integration. Sensor networks are typically connected to some back-end
infrastructure for tasking the network, as well as for storage and evaluation of sensing
results. Also, since limited resources preclude the execution of many services (e.g., for
complex data processing) in the sensor network, such services might be provided by an
external infrastructure possessing sufficient resources.

For these reasons it is often necessary to connect a sensor network to an external
network, such as the Internet. In the Great Duck Island habitat monitoring experiment
[20], for example, a number of isolated sensor network patches are linked to a base
station, which in turn is connected to the Internet via a satellite link. A database system
executing on the Internet is used to store and query sensing results.

To implement such solutions, typically proprietary gateway solutions are required
to bridge between the sensor network and the Internet. However, if the sensor nodes



support Bluetooth, off-the-shelf devices can be used to implement such solutions.
A Bluetooth-enabled laptop computer, for example, can be used to bridge between
Bluetooth and WLAN. Instead of a satellite link, a mobile phone can be used as a
gateway to connect a sensor network to the Internet.

User Interaction. Many Bluetooth-enabled devices can also be used for direct interac-
tion with isolated sensor networks that are not connected to a background infrastructure.
Interaction with a user might be required to specify the sensing task, or to alert the user
of sensing results. A Bluetooth-enabled mobile phone, for example, can be used to alert
a nearby user. By placing a phone in the vicinity of the sensor network, the sensor net-
work can even send short text messages (SMS) to a user who is not currently present. It
is advantageous to be able to use a widely spread class of devices with a well acquainted
user interface for such interactions.

Actuators. In some sensor network applications, just storing measurement results for
later evaluation is not sufficient but an immediate action is needed upon detecting cer-
tain phenomena – either by means of automated actuation or by notifying a user. Con-
sider for example an animal habitat monitoring application, where it might be useful to
notify a biologist or to take a picture in case a certain animal is present.

If the sensor network uses Bluetooth, we can choose among a wide variety of com-
mercial off-the-shelf Bluetooth-enabled consumer devices to implement such actuation.
For example, the sensor network can trigger a Bluetooth-enabled camera to take a pic-
ture when it suspects something interesting is happening.

Debugging. The development of algorithms and applications for sensor networks is
non-trivial for various reasons. Firstly, sensor networks are highly dynamic distributed
systems, where a consistent view of the global system state is typically not available to
the developer. Secondly, the behavior of the sensor network is highly dependent on the
physical environment, such that problems might not be easily reproducible. Thirdly, for
reasons of energy efficiency, sensor network applications do often perform in-network
data processing and aggregation, where raw sensor data is already processed and eval-
uated inside the network in order to reduce the volume of data which has to be trans-
mitted. To verify and debug such systems, the developer often needs access to both, the
raw sensor data and the aggregated output of the sensor network [8].

Currently, research groups working on the development of algorithms and appli-
cations for sensor networks typically use arrays of sensor nodes, where each node is
connected to a central computer by a serial cable and a serial port multiplexer. While
this is possible in small-scale laboratory settings, large-scale field experiments typically
cannot be instrumented this way. On the other hand, mobile terminals can give unteth-
ered access to groups of sensor nodes in the field for in situ debugging, provided they
both use the same radio technology. Here Bluetooth is an ideal candidate.

Sensor Node Heterogeneity. As mentioned earlier, sensor networks should employ in-
network data processing and aggregation in order to reduce the amount of data that
has to be transmitted within the network. This is desirable in order to achieve energy
efficiency and to match the typically limited capacity of the communication channels.



��� �����	�
oth 


 ������ � � �����������	��� ��� ���
�������������������

ds

� �����������	����� ���
� ���

er supply

 "! ��� �����������
oller���#� ���$�

 side

Module Microcontroller

ATmega128L

Supply

Bluetooth

Power

GPIO Analog Serial IO

Clock/Timer LED’s

SRAM

(a) (b)

Fig. 1. (a) BTnode hardware (b) BTnode system overview.

However, many research projects came to the conclusion that the computing and mem-
ory resources of sensor nodes are often too limited to perform typical signal processing
tasks (e.g., FFT, signal correlation). Hence, clustered architectures were suggested [13,
27], where the cluster-heads are equipped with more computing and memory resources.
Cluster-heads then process and aggregate sensor data collected from the nodes in their
cluster. In [13, 27], for example, PDAs with proprietary hardware extensions for wire-
lessly interfacing the sensor nodes are used for this purpose. With Bluetooth-enabled
sensor nodes, off-the-shelf PDAs and laptops can be easily integrated as cluster heads
without hardware modification.

3 BTnode Architecture

3.1 Hardware

The BTnode is an autonomous wireless communication and computing platform based
on a Bluetooth radio module and a microcontroller. The device has no integrated sen-
sors, since individual sensor configurations are required depending on the application.
Instead, with its many general-purpose interfaces, the BTnode can be used with var-
ious peripherals, such as sensors, but also actuators, DSPs, serial devices (like GPS
receivers, RFID readers, etc.) and user interface components. An interesting property
of this platform is its small form factor of 6x4 cm while still maintaining a standard
wireless interface.

The BTnode hardware (see Fig. 1) is built around an Atmel ATmega128L micro-
controller with on-chip memory and peripherals. The microcontroller features an 8-bit
RISC core delivering up to 8 MIPS at a maximum of 8 MHz. The on-chip memory con-
sists of 128 kbytes of in-system programmable Flash memory, 4 kbytes of SRAM, and
4 kbytes of EEPROM. There are several integrated peripherals: JTAG for debugging,
timers, counters, pulse-width modulation, 10-bit analog-digital converter, I2C bus, and
two hardware UARTs. An external low-power SRAM adds an additional 240 kbytes of
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Fig. 2. A lightweight OS framework for WSN applications.

data memory to the BTnode system. A real-time clock is driven by an external quartz
oscillator to support timing updates while the device is in low-power sleep mode. The
system clock is generated from an external 7.3728 MHz crystal oscillator.

An Ericsson Bluetooth module is connected to one of the serial ports of the micro-
controller using a detachable module carrier, and to a planar inverted F antenna (PIFA)
that is integrated into the circuit board.

Four LEDs are integrated, mostly for the convenience of debugging and monitoring.
One analog line is connected to the battery input and allows to monitor the battery
status. Connectors that carry both power and signal lines are provided and can be used
to add external peripherals, such as sensors and actuators.

3.2 Lightweight Operating System Support

The BTnode system software (see Fig. 2) is a lightweight OS written in C and assem-
bly language. The drivers, which are available for many hardware subsystems, provide
convenient APIs for application developers. The system provides coarse-grained coop-
erative multitasking and supports an event-based programming model.

Drivers. The drivers are designed with fixed buffer lengths that can be adjusted at com-
pile time to meet the stringent memory requirements. Available drivers include mem-
ory, real-time clock, UART, I2C, LEDs, power modes, and AD converter. The driver
for the Bluetooth radio provides a subset of the networking functionality according to
the Bluetooth specification. Bluetooth link management is performed on Bluetooth’s
L2CAP layer. RFCOMM, a serial port emulation, provides connectivity to computer
terminals and consumer devices, such as cameras and mobile phones. Dial-up connec-
tions to a modem server through a mobile GSM phone are easily established with a
special-purpose function. All other GSM services (such as file sharing, phone book and
calendar) can be utilized through lower-level interfaces.

Process Model. Like most embedded systems, the BTnode does not support a dynamic
process model. Only a single application is present on the system at a time. At com-
pile time, applications are linked to the system software, which comes as a library.
The resulting executable is then uploaded to the BTnode’s Flash memory, effectively
overwriting any previous application code. After uploading, the new application starts
immediately. However, the BTnode system can also be reprogrammed through the net-
work. To do so, the application currently running on the system needs to receive the



1: #include <btnode.h>
#define THRESHOLD_EV (MAX_SYSTEM_EVENT+1)

3: static u16 connection_id = 0;

5: int main( int argc, char* argv[] ) {
btn_system_init( argc, argv, /* ... */ );
btn_bt_psm_add( 101 ); /* accept connections */

8: btn_disp_ev_reg( BT_CONN_EV, conn_cb, 0 );
9: btn_disp_run();

return 0; /* not reached */
}

12: void conn_cb( call_data_t call_data, cb_data_t cb_data ) {
connection_id = (u16)(call_data & 0xFFFF);
bt_sensor_start( BTN_SENSOR_TEMP );

15: bt_sensor_set_threshold( BTN_SENSOR_TEMP, 30, THRESHOLD_EV );
16: btn_disp_ev_reg( THRESHOLD_EV, sensor_cb, 0 );

}
18: void sensor_cb( call_data_t call_data, cb_data_t cb_data ) {

u8 error = 0;
u8 databuf = (call_data & 0xFFFF);
btn_bt_data_send( connection_id, databuf, sizeof(data_buffer) );

}

Fig. 3. A simple BTnode program.

new executable, save it to SRAM, and then reboot the system in bootloader mode. The
bootloader finally transfers the received executable to Flash memory and starts it.

Programming Model. The system is geared towards the processing of (typically ex-
ternally triggered) events, such as sensor readings, or the reception of data packets on
the radio. To this end, BTnode applications follow an event-based programming model,
common to embedded systems and GUI programming toolkits, where the system sched-
ules application tasks on the occurrence of events. Internally, those tasks (or event han-
dlers) are implemented as C functions.

In the BTnode system, events model state changes. A set of predefined event types
is used by the drivers to indicate critical system conditions, such as expired timeouts
or data being ready for reading on an I/O device. Applications can define their own
event types, which are represented by 8-bit integer values. Individual events can carry
type-specific parameters for evaluation in the application task.

A central component of the system is the dispatcher, where applications register
event/event-handler-function pairs. After the dispatcher has been started, it also accepts
individual events from drivers and application tasks and stores them in a FIFO queue.
While the event queue is not empty, the dispatcher starts the corresponding handler (i.e.,
the previously registered function) for the next event in the queue, passing the events
individual parameters.

Events are processed in the order they are received by the dispatcher. Only one event
handler can be active at a time and every event handler is always completely executed
before the next is scheduled. So every event handler depends on the previous event
handler to terminate in time. However, long tasks can be broken into smaller pieces and
can be triggered subsequently by the event mechanism (e.g., by application-specific
events).



Fig. 3 shows a typical BTnode program, which is waiting for an incoming Bluetooth
connection. Once the connection is established, it repeatedly transmits sensor data ex-
ceeding a given threshold. During initialization, the program registers a handler for
connection events (line 8). It then passes control to the dispatcher (line 9), which enters
sleep mode until events occur that need processing. Once the connection is established,
the corresponding handler function conn cb is called by the dispatcher (line 12). The
program initializes the sensors with a threshold value (line 15) and registers the event
handler sensor cb for handling this event (line 16). On the occurrence of the sensor
event, the associated data is sent over the connection (line 18 ff).

Portability. The whole system software is designed for portability and is available
for different emulation environments (x86 and iPAQ Linux, Cygwin, and Mac OS X)
apart from the embedded platform itself. Emulation simplifies application building and
speeds up debugging since developers can rely on the sophisticated debugging tools
available on desktop systems. Also, the time for uploading the sensor-node application
to the embedded target can be saved. Furthermore, different platforms, such as an iPAQ
running Linux, can be used as cluster heads, reusing much of the software written for
the embedded nodes and making use of the resources of the larger host platform for
interfacing, extended computation or storage.

4 System Services

Besides the core system software, the BTnode platform also provides means to inte-
grate sensor nodes into a surrounding communication infrastructure, to exchange and
collaboratively process the data of locally distributed sensors, and to outsource compu-
tations to nearby devices with more sophisticated resources. These functions constitute
the core of the BTnode system services.

4.1 Ad Hoc Infrastructure Access

As noted in Sect. 2, sensor networks often need access to a background infrastruc-
ture. However, due to their deployment in remote, inaccessible, or undeveloped regions,
fixed access to a background infrastructure via stationary gateways usually cannot be
assumed. We therefore provide mobile ad hoc infrastructure access by means of mobile
gateways. The core idea of this approach is depicted in Fig. 4: when handheld devices
– such as Bluetooth-enabled mobile phones or PDAs – are placed in the vicinity of the
sensor network, BTnodes can utilize these mobile devices to access background ser-
vices in an ad hoc fashion. Such mobile gateways provide access to an infrastructure
via GSM or WLAN, for example.

The BTnode system provides services for utilizing nearby mobile phones as mo-
bile infrastructure gateways. An RFCOMM connection is set up between a BTnode
and the nearby phone. AT commands manage and control GSM data connections to a
background infrastructure server, which in turn must provide a regular modem or GSM
gateway itself. Alternatively, a BTnode can embed sensory data into an SMS message
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and transfer it over the public phone network. Depending on the application, both ap-
proaches have their advantages and disadvantages. While building up a GSM data con-
nection is more suitable for sending larger amounts of data, sending data in an SMS
message is asynchronous and does not require connection establishment with the com-
munication partner. The infrastructure provides software for running a GSM gateway
and for processing of incoming messages (see Fig. 4).

Sensor networks or parts thereof can be temporarily disconnected from the back-
ground infrastructure. Our service infrastructure provides a centralized tuple space [5,
7] in order to enable cooperation across such temporarily isolated network patches.
When disconnected, nodes buffer sensory data locally and synchronize with the tuple
space when they regain connectivity. As infrastructure communication takes place via
mobile gateways the delay for relaying the information over the centralized server can
become relatively large in the order of tens of seconds.

4.2 Collaborative Processing of Sensory Data

A typical sensor node has only limited processing power, can perceive only a small
local subset of its physical environment, and might not have all necessary sensors to
solve a complex sensing task on its own. For these reasons, sensor nodes usually need
to cooperate with others. The basic system concept that enables such kind of inter-node
interaction in the BTnode system services is a distributed tuple space.

The distributed tuple space serves as a shared data structure for a set of sensor nodes
which enables them to exchange and process data collaboratively. The main advantage
of the tuple space approach is that nodes become able to share their resources, such as
sensors and memory, with other nodes. For example, it is possible for nodes to operate
on remote sensors as if they were locally attached, and to store data tuples at other nodes
with free memory resources.

This distributed tuple space implementation does not require access to the central-
ized background infrastructure mentioned in the previous section. Instead, it is imple-
mented as a data structure covering multiple sensor nodes. BTnodes read local sensors,
embed sensory data into tuples, and write it into the distributed tuple space. Other nodes
can then access these tuples and fuse the corresponding sensory data with local mea-
surements. The corresponding result is usually embedded into a tuple that is again writ-
ten into the space. Our implementation also offers the possibility to register callbacks
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on certain sensor types, which is very handy for sensor fusion algorithms. For exam-
ple, a callback could be registered at a remote sensor for a temperature tuple, which
would notify the local node each time a tuple is generated. The temperature data from
the callback could then be fused with the local node’s own temperature readings.

The distributed tuple space also makes it easier for an application programmer to
design sensor fusion algorithms because they can operate on a broader common data ba-
sis. From the programmer’s viewpoint, the tuple space is a grouping concept based on a
node’s current situation or on application-specific information. Therefore, sensor nodes
that share their data in a distributed tuple space appear like a single node with many
sensors and resources. This simplifies the system view for the application programmer.

4.3 Outsourcing Computations

In Sect. 2 we mentioned that some sensor network applications require the use of de-
vices with more computing and memory resources than sensor nodes in order to per-
form, for example, complex signal processing tasks. Both the use of Bluetooth as the
BTnodes’ communication technology and the portability of the BTnode software makes
it easy to integrate commodity devices such as Bluetooth-enabled PDAs into the sensor
network, for example as cluster heads.

Additionally, for outsourcing computations spontaneously to nearby mobile
Bluetooth-enabled devices, the BTnode system provides the so-called Smoblet service.
Smoblets are precompiled Java classes, similar to applets, that are stored in the program
memory of BTnodes and transferred to nearby mobile devices, where they are executed
to process input from the sensor network. To enable this kind of cooperation, the mobile
device joins the distributed tuple space of the sensor node that originally provided the



Smoblet code. As the actual origin of sensory data and the actual location of resources
becomes to some degree transparent through the tuple space, it becomes irrelevant on
which device (handheld or sensor node) the code is actually executed. By transferring
code to a nearby handheld device with more resources and by providing access to the
same data basis through the distributed tuple space, sensor nodes can save considerable
amounts of energy [27, 11].

A Smoblet can also contain Java code for a user interface, which – when transmitted
to the mobile device – allows the user to adapt certain settings of a sensor node or to
control an application. The transmission of code can be initiated by a sensor node itself
based on its current context, or by a user by means of a simple user interface on the
handheld.

Fig. 5 gives an overview of the Smoblet concept. The BTnode system services pro-
vide a set of libraries that allow Java programs to operate on data in a distributed tuple
space and to transfer Java code over a Bluetooth connection. An application program-
mer generates the Smoblet code using these libraries on a host machine and transforms
the Java classes (or JAR archive files) into C source files. The programmer can then
compile and link these files into the application for the sensor node. When the result-
ing program file is transferred to the microcontroller of the sensor node, the Smoblets
are automatically stored into the program memory of that node. BTnodes themselves
cannot execute Java code, the program memory serves merely as data storage for the
Smoblets. When a handheld device now enters the range of the sensor node, the Smoblet
code can be transferred over a local Bluetooth connection. Thereby, the handheld joins
the distributed tuple space of the sensor node and executes the Smoblet code, which can
now operate on the shared data structure provided by the distributed tuple space.

5 Applications

BTnodes have been used as a prototyping platform for a number of applications [2, 11,
21, 25, 26]. Below we present two additional applications and discuss how they make
use of the various features of our platform. The first application is a sensor network
for tracking mobile objects using a remote-controlled toy car as a sample object. The
second application is about monitoring the state of products during transportation on a
truck.

5.1 Object Tracking

The purpose of this project is to explore the use of Smart Dust for tracking the move-
ments of mobile entities in the open field (e.g., vehicles, animals). Smart Dust [10] are
next generation sensor nodes, which provide sensing, computing, and wireless commu-
nication capabilities on a single device as tiny as a few cubic millimeters. The focus
here is on support mechanisms such as node localization and time synchronization that
are suitable for large networks of Smart Dust.

Since Smart Dust is not yet available, we built a prototype system based on BTnodes
in order to evaluate the algorithms we developed. We used a remote-controlled toy car
as a sample target. A number of BTnodes are randomly deployed in the area of interest



and can change their location after deployment. The nodes use attached sensors to detect
the presence of the car and send respective notifications to a base station. The base
station fuses these notifications in order to estimate the current location of the car. A
graphical user interface displays the track and allows to control various aspects of the
system. The sensor data fusion requires that all nodes share a common reference system
both in time and space, which necessitates mechanisms for node localization and time
synchronization. The base station consists of a Linux laptop computer equipped with a
Bluetooth radio. A detailed description of the system can be found in [23].

The hardware abstraction provided by the BTnode operating system software al-
lowed us to develop and debug the BTnode software on a Linux platform. Moreover,
the base station software executing on the Linux laptop uses the same operating system
software as the BTnodes, which makes it particularly easy to port the base station soft-
ware to another BTnode, which could then send off tracking results to a remote user via
a mobile phone.

5.2 Product Monitoring

The goal of this application is to monitor the state of goods during transport such that the
owner of a product can query the product’s state and is notified whenever it is damaged.
This notification should be instantaneous, containing information about when, where,
and why a product has been damaged. To simplify prototyping, the application does not
rely on extra stationary hardware installed inside vehicles. In our prototype, BTnodes
are attached to ordinary products. The nodes themselves are equipped with acceleration
and temperature sensors to determine the product’s current state and to derive the reason
why a product has been damaged. When a product is damaged, the attached BTnode
tries to notify the owner of the product.

Background infrastructure access takes place using the Bluetooth-enabled mobile
phone of the vehicle’s driver. Whenever it is in range of the products, they use it as
a mobile access point for communicating with a background infrastructure server (see
Sect. 4). Between consecutive infrastructure accesses, BTnodes buffer data and syn-
chronize their state with a background infrastructure service whenever access becomes
possible. Additionally, the driver’s mobile phone is used as location sensor. When a
product is damaged, the corresponding BTnode obtains the current cell id and location
area code from the mobile phone. The information about where an event occurred is
then embedded into the message sent to the background infrastructure service.

The user interaction through the mobile phone consists of a WAP (Wireless Appli-
cation Protocol) interface for querying the status of a product and an SMS message to
notify the owner by a short text message whenever the product has been damaged. It
is implemented as a Servlet that generates WAP pages providing information about the
product’s current state. User inputs can also be passed on directly to the product when
a mobile access point enters the range of the attached BTnode.

6 Energy Consumption

One major criticism of Bluetooth and its use in sensor networks is its high energy
consumption. However, as measurements in [18] confirm, the energy consumption per



transmitted bit is competitive with dedicated low-power radios. The authors conclude,
that Bluetooth is a viable solution energy-wise if the radio is only switched on for short
burst transfers and stays turned off otherwise. Note that this fits many sensor network
applications quite well, where network activity is rather bursty and short, triggered by
rare activities in the environment (e.g., a product being damaged in the product monitor-
ing application). There are two important strategies to switch off the radio frequently:
duty-cycling and wake-up radio.

With duty cycling, the radio is switched on in a periodical pattern, trading off net-
work latency for energy efficiency. Consider for example the product monitoring appli-
cation described above. We can estimate the average battery lifetime of a BTnode as
follows: A 10 % duty cycle for Bluetooth yields a quite acceptable average power con-
sumption of 6.5 mW and a battery lifetime in the order of weeks on a standard 840 mAh
Li-ion battery. Here, 12 mW, 160 mW, and 0.5 mW power consumption were assumed
for sensing, communication, and idle modes, respectively.

For wake-up radio [24], a second low-power radio is attached to a BTnode. While
Bluetooth is normally switched off, the low-power radio handles low-bandwidth data
and network management traffic. Bursts of high bandwidth traffic are negotiated on
the low-power channel. Both the receiver and sender then switch on their Bluetooth
radios, before sending the actual data via Bluetooth. This strategy can save a significant
amount of power if the high-power radio is only occasionally needed. We envision a
future dual-radio platform, which would allow the implementation of such a strategy.

Additionally, newer Bluetooth hardware has considerably improved power charac-
teristics compared to the modules used for the current generation of BTnodes, and is
expected to reduce power consumption in communication mode by a factor of 2-4.
However, even with the current hardware, energy consumption is low enough to actu-
ally build prototype applications that run for hours or days, enabling us to gain practical
experience through experimentation.

7 Related Work

The classical approach to Wireless Sensor Network devices aims at low power and
highly integrated node hardware. One of its most prominent representatives is the UC
Berkeley Mote [16] that has been commercialized and is widely used by researchers
all over the world. Other research groups have developed similar platforms, all based
on a low power microcontroller and a custom radio front-end chip [3, 16, 22]. Common
to these architectures is that all protocol processing (baseband and MAC) is done on
the host microcontroller, which implies a meticulous design process, knowledge about
RT systems, and locks up many resources on the host CPU. Another drawback of these
platforms is that they can only communicate with devices equipped with the same ra-
dio and protocol processing capabilities. In contrast to that, the BTnodes can interact
with any Bluetooth-enabled device without the need to integrate further hardware and
software.

Other prototyping systems based on FPGAs, StrongARM processors, and similar
hardware components [22] are geared towards protocol and communication develop-
ment only. Other researches have tried to set up a development platform that contains



as many subsystems as possible (e.g., the I-Badge system [6]), inducing considerable
system complexity and also interfacing constraints.

Most of the available hardware platforms only provide a thin hardware abstraction
layer, on top of which applications are executing. One particular exception is TinyOS
[16], a component-oriented operating system designed for the Berkeley Motes. Similar
to our approach it provides asynchronous events as a basic programming abstraction.
System services (such as multi-hop routing) as well as applications are implemented as
a set of components with well-defined interfaces. A simple declarative language is used
to connect these components in order to form a complete application. TinyOS applica-
tions are programmed in a custom-made C dialect, requiring special development tools.
This is in contrast to our platform, which uses standard C and an unmodified GNU tool
chain.

Various projects aim to provide a service infrastructure or middleware which sup-
ports the development of complex sensor network applications. TinyDB [15] interprets
the sensor network as a distributed database being constantly filled with sensory data
such that a simple SQL-like query language can be used to query the sensor network.
SensorWare [4] uses an agent-like approach to program sensor networks for complex
tasks. A scripting language is used to define small programs which are then distributed
to the nodes of the network. Later on, executing scripts can migrate from node to node
along with their state information. DSWare [19] uses a real-time variant of an event
notification system, which allows to subscribe to specific events generated by sensor
nodes. In contrast, we decided to follow an approach based on tuple spaces. We believe
that this is a useful abstraction for many sensor applications that depend on fusing infor-
mation from many nearby sensor nodes. Firstly, a tuple space provides a natural place
for collecting and fusing this information. Secondly, since physical phenomena are of-
ten local, cooperation in sensor networks is also often local. Hence, local tuple spaces
can be efficiently implemented by using broadcast communication over very few hops.

8 Conclusion and Future Work

We have presented the BTnode platform for prototyping sensor network applications. It
consists of a Bluetooth-based sensor node, a lightweight operating system with support
for several hardware platforms, and a set of system services to support the develop-
ment of complex sensor network applications. As a proof-of-concept, we presented two
complex applications which we developed using this platform.

We motivated our platform by the need for an environment to quickly prototype
sensor network applications using commercial off the shelf devices in conjunction with
sensor nodes. Additionally, we observed that sensor networks are often part of larger
systems consisting of heterogeneous devices. Collaboration of the sensor nodes with
these devices requires a common and widely supported networking technology, such as
Bluetooth.

Up to now, about 200 BTnodes have been manufactured, which are used by a num-
ber of research projects across Europe. As part of the Swiss National Competence Cen-
ter for Mobile Information and Communication Systems (NCCR-MICS) [29], we in-
tend to develop the BTnode platform into a versatile and widely available prototyping



platform for sensor network applications. A BTnode system-software kit consisting of a
build environment (avr-gcc cross compiler and standard libraries), source code, debug-
ging support, demo examples, and documentation has been assembled and is available
to developers along with a support mailing list and software repository [28].

We are currently considering augmenting the next generation of BTnodes with an
additional ultra low-power radio, which is developed by one of our partner institutions
within NCCR-MICS. Among other things, this will allow us to build more energy-
efficient sensor networks based on Bluetooth by using a wake-up strategy similar to the
one described in [24] – thus combining the energy efficiency of ultra low power radios
with the interoperability of Bluetooth.
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