
1

Programming Atmel’s AT29 Flash Family

Introduction
Atmel offers a diverse family of small
sector Flash memory devices ranging in
density from 256K to 4M bits. These
devices read and program with a single
voltage supply. The nominal supply volt-
age is 5V for the AT29CXXX, 3.3V for
the “low voltage” AT29LVXXX, and 3V
for the “Battery Voltage” AT29BVXXX
Flash memory family. The entire Flash
PEROM product line is designed to allow
users to have one common program-
ming algorithm for all three Flash voltage
families. Therefore, upgrading from one
density to another and from a higher
voltage to a lower voltage device is sim-
plified.

This application note describes the
design benefits of Atmel’s AT29 Flash
architecture as well as how the device ID
feature is used to adjust for varying den-
sities and supply voltages. In addition,
Atmel’s Software Data Protection (SDP)
feature, which prevents inadvertent
writes, is described. An example is given
to illustrate the ease with which the pro-
gramming software can be written to
accommodate four different 4M bit Flash
dev ices : the AT29C040, the
AT29LV040, and the newer generation
Flash devices, the AT29C040A and the
AT29LV040A.

Hardware and software has been devel-
oped to demonstrate the relevant design
issues. The demo uses an AT89C51
Flash-based microcontroller (which has
the same pinout and instruction set as
an 80C51) as the host processor and a
“C” language program for the software.
The software automatically adjusts the
amount of time required for program-
ming the varying voltage versions of the
4M bit Flash devices in addit ion to

accommodating for their different sector
sizes.

The AT89C51, a member of Atmel’s
growing family of Flash microcontroller
devices, features 4K bytes of in-system
reprogrammable Flash memory (see
Atmel application note “AT89C51 In-Cir-
cuit Programming” for additional informa-
tion). Current and future versions of
Atmel’s microcontroller family incorpo-
rate from as little as 1K byte of Flash
memory to as much as 128K bytes, pro-
viding many density options for different
applications. Other versions will also
include special architectures such as a
combinat ion of Flash and para l lel
EEPROM memory on board.

Programming Flash
Devices
Unlike Atmel’s Flash memories, previous
generations of Flash memories had
large sectors, typically 4K to 128K bytes,
and required that an entire sector be
erased prior to programming. Generally,
the sector erase cycle time was hun-
dreds or thousands of milliseconds and
could be as long as 30 seconds for the
entire memory array. In addition, a sepa-
rate high voltage supply was required for
a write and erase operation. Atmel’s
AT29 Flash memory family has simpli-
fied usage by having only one supply
voltage, reducing the sector size, having
the programming similar to an SRAM
write operation, and decreasing signifi-
cantly the total programming time.

Small sector sizes reduce the amount of
system resources necessary for pro-
gramming. When only a few bytes in a
Flash memory need to be altered, a
RAM image of the Flash sector must be
created. The RAM must then be altered
with the new data, and the image trans-

Flash

Application
Note
(AN-3)

Flash

Rev. 0518B–10/98

Programming
Atmel’s AT29
Flash Family

Flash2

ferred back into the Flash device. Because Atmel’s Flash
devices have small sector sizes (from 64 to 512 bytes,
depending on the memory density), the RAM requirements
are much less than those of large sector Flash devices.
Often, the system RAM available is sufficient for Atmel’s
Flash, whereas large sector Flash devices usually require
an additional SRAM.

A second advantage of Atmel’s AT29 Flash is that an entire
sector can be updated during a single program operation,
instead of the byte-by-byte programming of previous gener-
ation Flash memories. This saves significant programming
time when updating an entire sector, especially when com-
paring Atmel’s small sector devices with large sector
devices. In addition, Atmel’s devices do not require a sector
erase prior to writing, thus saving additional programming
time. The maximum sector program time is 10 msec for the
AT29CXXX fami l y and 20 msec fo r the
AT29LVXXX/AT29BVXXX families.

AT29C040 and AT29C040A Architecture
The AT29C040 provides operation similar to a byte-wide
SRAM. The device has eight data lines and 19 address
lines. The familiar three input control lines are also present
(CE, OE, WE). Read operations are identical to an SRAM,
but write operations are somewhat different due to the write
cycle time (tWC) requirements of all Flash memories. Flash
write operations take several milliseconds to complete,
compared to the nanosecond writes of SRAM devices. It
should be noted that Atmel’s AT29 Flash PEROMs require
only a write operation; the erase operation is automatically
performed internally in the device.

Data is loaded into the AT29C040 one sector at a time, with
each sector consisting of 512 bytes. The sector chosen for
modification is defined by the upper order address bits (A9-
A18). The entire sector must be loaded during the write
operation. Any byte not loaded during the sector load will
contain FF (hex) after the write operation has completed.
Address lines A0 through A8 define the location of the
bytes within a sector. All data must be loaded into the same
sector (A9 through A18 must remain constant) and can be
randomly loaded within that sector.

The AT29C040A is identical to the AT29C040 except for
the sector size and the Device ID Code (the Device ID
Code is described later). The AT29C040A has a 256-byte
sector (instead of a 512-byte sector) which is defined by
address lines A8 through A18; the bytes within the sector
are determined by address lines A0 through A7.

Software Data Protection (SDP)
One concern of systems designers when using nonvolatile
programmable memories is the possibility of inadvertent
write operations that can be caused by noise or by power-

up and power-down sequences. Atmel’s Flash memories
provide a feature called Software Data Protection (SDP)
that addresses this issue. The user can enable SDP upon
receipt of the device from Atmel, and its usage is highly
recommended. Data can be written into a sector with or
without SDP enabled. However, once SDP has been
enabled, the device requires that all subsequent write oper-
ations perform a series of “dummy” write operations before
loading the chosen sector with data. The “dummy” writes
consist of loading three known data values into three pre-
defined addresses. This 3-byte sequence preceding a write
operation virtually eliminates the chance of inadvertent
write operations. The sequence is described below.

1. Load Data AA (hex) into Address 05555 (hex)

2. Load Data 55 into Address 02AAA

3. Load Data A0 into Address 05555

4. Load desired sector with data

5. Pause tWC (device write cycle time)

6. Continue with next operation.

If SDP is enabled, any attempt to write to the device without
the 3-byte command sequence will start a write cycle. How-
ever, no data will actually be written to the device, and dur-
ing this “write” cycle time (tWC), valid data cannot be read
from the Flash.

Product and Manufacturer ID
Atmel’s Flash memory devices allow the user to access
both device and manufacturer information. This feature
allows a system to determine exactly which Flash memory
is being used. Once this is known, the host system can
choose different algorithms for write operations in order to
accommodate for differences in device density, VCC

requirements, sector size, and required write cycle time.

Product and manufacturer ID information is determined
with the Software Product Identification procedure, which is
similar to the Software Data Protection sequence. The
sequence is described below.

1. Load Data AA (hex) into Address 05555 (hex)

2. Load Data 55 into Address 02AAA

3. Load Data 90 into Address 05555

4. Pause tWC (device write cycle time)

5. Read Address 00000
Data read is the Manufacturer Code

6. Read Address 00001
Data read is the Device ID Code

7. Load Data AA into Address 05555

8. Load Data 55 into Address 02AAA

9. Load Data F0 into Address 05555

10. Pause tWC (device write cycle time)

Flash

3

11. The device is returned to standard operating mode

The following table uses the 4M bit Flash as an example to
illustrate the pertinent device information that can be deter-
mined once the Device ID Code is known. Please refer to
the table at the end of this application note for information
on other Flash devices.

Programming Demonstration
Hardware and software descriptions have been prepared to
demonstrate how Atmel’s AT29 Flash memories can be
reprogrammed. The descriptions are provided in the follow-
ing two sections. A circuit schematic of the demonstration
hardware and a source code listing of the software are also
included.

Hardware Description
The demo hardware consists of a 12 MHz AT89C51 Flash-
based microcontroller with 4K bytes of on-board Flash
memory. The internal AT89C51 Flash memory is used for
boot code, and the external 8K x 8 SRAM and the
AT29C040A a re mapped as da ta memory . The
AT29C040A is also mapped as program memory to facili-
tate off-chip program execution. The AT89C51 can only
access a maximum of 64K bytes of data memory space,
while the AT29C040A has 512K bytes of storage capacity.
To solve this size mismatch, the AT29C040A is bank
switched into the AT89C51 data memory map in 8K byte
blocks. The bank switching is performed with six general
purpose I/O port bits on the AT89C51. The system address
map is shown below.

Software Description
The software demonstrates how the Device ID Code can
be used to allow a single program to work with different
Atmel Flash memories. The program uses Atmel’s 4M bit
Flash (AT29C040, AT29LV040, AT29C040A, and
AT29LV040A) as an example, but the software can be eas-
ily adapted to accommodate other device densities.

In order to program the Flash memory, the software must
first determine which Flash device is being used. This is
accomplished by first putting the device into the Software
Product Identification mode (described in the “Product and
Manufacturer ID” section of this application note). The pro-
gram subsequently reads the Device ID Code and exe-
cutes the 3-byte command sequence to return the Flash to
the standard operating mode. Using the Device ID Code,
the program then determines the appropriate sector size
and write cycle time (tWC) for the particular 4M bit Flash
being used.

To demonstrate a sector write, the program proceeds to
load the SRAM with “dummy” data. After the data has been
loaded, the program transfers the data from the SRAM to a
predefined sector (within one of the mapped 8K byte
blocks) of the 4M bit Flash. After pausing the required write
cycle time (tWC), the sector that was just written is trans-
ferred back to the SRAM buffer.

Summary
Atmel’s AT29 Flash memories are designed to allow all
densities and device configurations to be programmed
using the same programming algorithm. The user has to
simply determine the Device ID Code and set the appropri-
ate sector size and write cycle time. This operation need
only be performed once provided the sector size and write
cycle information is saved. If only one density or configura-
tion will ever be used, then reading of the Device ID Code
can be eliminated, and the sector size and write cycle infor-
mation can be predefined in the software. The table at the
end of this application note details the device information
and the Device ID Codes for Atmel’s AT29XXX Series of
Flash PEROMs.

As demonstrated, programming Atmel’s AT29 Flash is a
simple process, similar to loading an SRAM. Architectural
and circuit features within the devices minimize software
and system overhead while simplifying programming pro-
cedures. Atmel’s AT29 Flash memories require only about
one-tenth of the typical software, buffer memory, and per-
formance overhead of previous generation Flash, thus pro-
viding substantial system cost savings.

Device ID V CC

Sector
Size tWC

AT29C040 5B 5.0V ± 10% 512 bytes 10 ms

AT29C040A A4 5.0V ± 10% 256 bytes 10 ms

AT29LV040 3B 3.3V ± 0.3V 512 bytes 20 ms

AT29LV040A C4 3.3V ± 0.3V 256 bytes 20 ms

AT29BV040 3B 3.0V ± 10% 512 bytes 20 ms

AT29BV040A C4 3.0V ± 10% 256 bytes 20 ms

System Address Map

AT89C51
Microcontroller

0000-1FFF
Internal Program
Memory

8K x 8 Static RAM 2000-3FFF Data Memory

AT29C040A 4000-5FFF
Program and Data
Memory

Flash4

/***/

/* This program demonstrates how a sector in one of the 512K X 8 */

/* variants can be programmed. The program first determines */

/* exactly which device is available by reading the device ID. */

/* A sector is then programed with data that is copied from an */

/* SRAM buffer. After waiting for the programming cycle to */

/* complete the data is copied back from the 29C040 to the SRAM */

/* buffer. */

/* */

/* The sector size and programming time are determined */

/* by examining the device ID. The different 512K X 8 devices */

/* have either a 256- or 512-byte sector size and a 10 mS or 20 */

/* mS tWC. */

/***/

/***********************/

/* COMPILER DIRECTIVES */

/***********************/

Atmel AT29 Flash Memories

Device Memory Size
Device ID

Code
Number of

Sectors Sector Size
Write Cycle
Time (t WC) Comments

AT29C256 32K x 8 DC 512 64 bytes 10 ms

AT29LV256 32K x 8 BC 512 64 bytes 20 ms

AT29C257 32K x 8 DC 512 64 bytes 10 ms

AT29C512 64K x 8 5D 512 128 bytes 10 ms

AT29LV512 64K x 8 3D 512 128 bytes 20 ms

AT29C010A 128K x 8 D5 1024 128 bytes 10 ms

AT29LV010A 128K x 8 35 1024 128 bytes 20 ms

AT29BV010A 128K x 8 35 1024 128 bytes 20 ms

AT29C1024 64K x 16 25 512 128-words 10 ms

AT29LV1024 64K x 16 26 512 128-words 20 ms

AT29C020 256K x 8 DA 1024 256 bytes 10 ms

AT29LV020 256K x 8 BA 1024 256 bytes 20 ms

AT29BV020 256K x 8 BA 1024 256 bytes 20 ms

AT29C040
512K x 8 5B 1024 512 bytes 10 ms Use AT29C040A for

new designs

AT29LV040
512K x 8 3B 1024 512 bytes 20 ms Use AT29LV040A for

new designs

AT29BV040
512K x 8 3B 1024 512 bytes 20 ms Use AT29BV040A for

new designs

AT29C040A 512K x 8 A4 2048 256 bytes 10 ms

AT29LV040A 512K x 8 C4 2048 256 bytes 20 ms

AT29BV040A 512K x 8 C4 2048 256 bytes 20 ms

Flash

5

 .asm

 .linklist

 .symbols

 .endasm

#include “c8051sr.h”

/********************/

/* GLOBAL VARIABLES */

/********************/

unsigned char part_id; /* DEVICE ID VALUE */

int sector_size; /* DEVICE SECTOR SIZE */

int twc; /* DEVICE PROGRAMMING TIME REQUIRED */

unsigned char data_buffer[512]; /* SRAM DATA BUFFER */

unsigned char block_number; /* WHICH BLOCK TO PROGRAM */

unsigned int sector_address; /* ADDRESS WITHIN SECTOR TO PROGRAM */

unsigned int address_pointer; /* SCRATCH PAD ADDRESS REGISTER */

unsigned char temp_byte; /* SCRATCH PAD DATA REGISTER */

/***********************/

/* SUPPORT SUBROUTINES */

/***********************/

/**/

/* DELAYMS performs a time delay. The variable ticks indicates the */

/* length of the delay in mS. This routine is dependant upon the */

/* clock rate of the 89C51. If a clock rate other than 12 MHz is */

/* used the variable 'count' must be modified. */

/**/

void delayms(char ticks)

{

char count;

 for (ticks = ticks; ticks >= 0; ticks—)

 {

 for (count = 0; count <= 13; count++)

 {

 }

 }

}

/***/

/* ENTER_ID_MODE is used to put the 29C040 into Software Product */

/* Identification mode. The three step sequence is performed in */

/* assembly because of tBLC requirements of the 29C040. */

/***/

Flash6

void enter_id_mode()

{

 .asm

 mov a,#05h

 mov p1,a

 mov dptr,#4555h

 mov a,#aah

 movx @dptr,a ;write AAh to address 05555h

 mov a,#02h

 mov p1,a

 mov dptr,#4aaah

 mov a,#55h

 movx @dptr,a ;write 55h to address 02AAAh

 mov a,#05h

 mov p1,a

 mov dptr,#4555h

 mov a,#90h

 movx @dptr,a ;write 90h to address 05555h

 .endasm

}

/**/

/* LEAVE_ID_MODE is used to remove the 29C040 from Software Product */

/* Identification mode. The three step sequence is performed in */

/* assembly because of tBLC requirements of the 29C040. */

/**/

void leave_id_mode()

{

 .asm

 mov a,#05h

 mov p1,a

 mov dptr,#4555h

 mov a,#aah

 movx @dptr,a ;write AAh to address 05555h

 mov a,#02h

 mov p1,a

 mov dptr,#4aaah

 mov a,#55h

 movx @dptr,a ;write 55h to address 02AAAh

 mov a,#05h

 mov p1,a

 mov dptr,#4555h

 mov a,#f0h

 movx @dptr,a ;write F0h to address 05555h

 .endasm

Flash

7

}

/***/

/* GET_ID is used read the value at location 00001 of the 20C040. */

/* The value read from the device is returned to the calling routine */

/***/

unsigned char get_id()

{

 P1 = 0x00; /* read from block 00h */

 .asm

 mov dptr,#4001h ;read from address 00001h

 movx a,@dptr ; (flash offset = 4000h)

 .endasm

 return(A); /* return data value */

}

/**/

/* GET_PART_ID determines the device ID of the 29C040 being used. */

/* The ID value is returned to the calling routine */

/**/

unsigned char get_part_id()

{

unsigned char part_id;

 enter_id_mode(); /* enter Identification mode */

 delayms(20); /* delay 20mS */

 part_id = get_id(); /* read device ID from address 1 */

 leave_id_mode(); /* exit from Identification mode */

 delayms(20); /* delay 20mS */

 return(part_id); /* return device ID value */

}

/***/

/* SET_PARAMETERS is used to define what sector size and write */

/* cycle is required for the particular 29C040 being used */

/* The sector size is stored in the global variable SECTOR_SIZE, */

/* and the programming time is stored in the global variable TWC.*/

/***/

void set_parameters(unsigned char part_id)

{

 switch(part_id)

 {

 case 0x5b : sector_size = 512; /* is the device a 29C040 */

 twc = 10;

Flash8

 break;

 case 0xa4 : sector_size = 256; /* is the device a 29C040A */

 twc = 10;

 break;

 case 0x3b : sector_size = 512; /* is the device a 29LV040 */

 twc = 20;

 break;

 case 0xc4 : sector_size = 256; /* is the device a 29LV040A */

 twc = 20;

 break;

 default : sector_size = 0; /* variables default to 0 */

 twc = 0;

 }

}

/***/

/* DUMMY_BUFFER_LOAD simply loads the SRAM buffer with the value */

/* passed in IN_VALUE. Although the SRAM buffer has 512 bytes, */

/* only the number of bytes required to fill a sector are loaded.*/

/***/

void dummy_buffer_load(char in_value)

{

int count;

 for (count = 0; count <= sector_size; count++)

 {

 data_buffer[count] = in_value;

 }

}

/***/

/* WRITE_SECTOR copies data from the SRAM buffer into the sector */

/* specified in the 29C040. After loading the sector the routine*/

/* paused the required tWC for the programming cycle to complete.*/

/***/

void write_sector()

{

 .asm

 mov a,#05h ;perform 3 step SDP sequence

 mov p1,a

 mov dptr,#4555h

 mov a,#aah

 movx @dptr,a ;write AAh to address 05555h

 mov a,#02h

 mov p1,a

 mov dptr,#4aaah

Flash

9

 mov a,#55h

 movx @dptr,a ;write 55h to address 02AAAh

 mov a,#05h

 mov p1,a

 mov dptr,#4555h

 mov a,#A0h

 movx @dptr,a ;write A0h to address 05555h

 mov dptr,#_block_number

 movx a,@dptr

 mov P1,a ;set up block address

 mov dptr,#_sector_size ;load sector size

 movx a,@dptr

 mov r0,a

 inc dptr

 movx a,@dptr

 mov r1,a

 mov dptr,#_sector_address ;load first sector address to write

 movx a,@dptr

 add a,#40h

 mov r3,a

 inc dptr

 movx a,@dptr

 mov r2,a

 mov dptr,#_data_buffer ;load pointer to data_buffer

nextwr: movx a,@dptr ;load data to write to 29C040

 inc dptr ;increment data_buffer pointer

 push dpl

 push dph

 mov dpl,r2

 mov dph,r3

 movx @dptr,a ;write data to 29C040

 inc dptr ;increment flash address pointer

 mov r2,dpl

 mov r3,dph

 pop dph

 pop dpl

 djnz r1,nextwr ;decrement byte counter

 djnz r0,nextwr ; loop until sector has been loaded

 .endasm

 delayms(twc); /* delay for the programming cycle */

}

/**/

/* READ_SECTOR copies a sector from the 29C040 into the SRAM buffer */

/* Either 256 or 512 bytes are transfered depending on the size of */

/* the sector. */

/**/

void read_sector()

Flash10

{

unsigned int count;

 P1 = block_number; /* initial block # */

 address_pointer = sector_address + 0x4000; /*create address pointer*/

 for (count = 0; count < sector_size; count++) /*transfer sector to SRAM*/

 {

 .asm

 mov dptr,#_address_pointer ;load address pointer's address

 movx a,@dptr ;load address pointer high byte

 mov b,a

 inc dptr

 movx a,@dptr ;load address pointer low byte

 mov dpl,a

 mov dph,b

 movx a,@dptr ;read data from 29C040

 mov dptr,#_temp_byte

 movx @dptr,a ;store data from 29C040 into temp_byte

 .endasm

 data_buffer[count] = temp_byte; /*place data into SRAM*/

 address_pointer = address_pointer + 1; /*increment address pointer*/

 }

}

/************/

/* MAINLINE */

/************/

main()

{

 part_id = get_part_id(); /* GET PART ID */

 set_parameters(part_id); /* DETERMINE WRITE PARAMETERS */

 dummy_buffer_load(0x55); /* LOAD SRAM BUFFER WITH DUMMY DATA */

 block_number = 0x1f; /* SPECIFY BLOCK NUMBER TO WRITE */

 sector_address = 0x0400; /* SPECIFY ADDRESS WITHIN BLOCK */

 write_sector(); /* COPY SRAM BUFFER TO 29C040 */

 read_sector(); /* COPY 29C040 SECTOR TO SRAM */

}

Flash

11

© Atmel Corporation 1998.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
er ty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

0518B–10/98/xM

